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Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

Kazuhisa Miyoshi, Bradley A. Lerch, Susan L. Draper, and Sai V. Raj
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract: The fretting behavior of Ti-48Al-2Cr-2Nba (γ-TiAl) in contact with the nickel-
base superalloy 718b was examined in air at temperatures from 296 to 823 K (23 to
550 °C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718
were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed
Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference
experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting
conditions, the degree of transfer was greater for Ti-6Al-4V than for Ti-48Al-2Cr-2Nb.
Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The
increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K.
However, fretting wear increased as the temperature was increased from 473 to 823 K.
At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on
the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load
tended to produce more metallic wear debris, causing severe abrasive wear in the
contacting metals.

aComposition, at.%: titanium, 47.9; aluminum, 48.0; niobium, 1.96; chromium, 1.94;
carbon, 0.013; nitrogen, 0.014; and oxygen, 0.167.

bComposition, wt.%: nickel, 50–55; chromium, 17–21; iron, 12–23; niobium plus
tantalum, 4.75–5.5; molybdenum, 2.8–3.3; cobalt, 1; titanium, 0.65–1.15; aluminum,
0.2–0.8; silicon, 0.35; manganese, 0.35; copper, 0.3; carbon, 0.08; sulfur, 0.015;
phosphorus, 0.015; and boron, 0.006.
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Introduction

Adhesion, a manifestation of mechanical strength over an appreciable area, has
many causes, including chemical bonding, deformation, and the fracture processes
involved in interface failure. A clean metal in contact with another clean metal will fail
either in tension or in shear because some of the interfacial bonds are generally stronger
than the cohesive bonds within the cohesively weaker metal [1]. The failed metal
subsequently transfers material to the other contacting metal. Adhesion undoubtedly
depends on the surface cleanliness; the area of real contact; the chemical, physical, and
mechanical properties of the interface; and the modes of junction rupture. The environment
influences the adhesion, deformation, and fracture behaviors of contacting materials in
relative motion.

Clean surfaces can be created by repeated sliding in vacuum, making direct contact
of the fresh, clean surfaces unavoidable in practical cases [2]. This situation also applies in
some degree to sliding contact in air, where fresh surfaces are continuously produced on
interacting surfaces in relative motion. Microscopically small, surface-parallel relative
motion, which can be vibratory (in fretting or false brinnelling) or creeping (in fretting),
produces fresh, clean interacting surfaces and causes junction (contact area) growth in the
contact zone [3–5].

Fretting wear produced between contacting elements is adhesive wear taking place
in a nominally static contact under normal load and repeated microscopic vibratory motion
[6–10]. The most damaging effect of fretting is the possibly significant reduction in the
fatigue capability of the fretted component, even though the wear produced by fretting
appears to be quite mild [10]. For example, Hansson, et al. reported that the reduction in
fatigue strength by fretting of Ti-47Al-2Nb-2Mn containing 0.8 vol.% TiB2 was
approximately 20 percent.

Fretting fatigue is a complex problem of significant interest to aircraft engine
manufacturers [11–14]. Fretting failure can occur in a variety of engine components.
Numerous approaches, depending on the component and the operating conditions, have
been taken to address the fretting problem. The components of interest in this investigation
were the low-pressure turbine blades and disks. The blades in this case were titanium
aluminide and the disk was a nickel-base superalloy. A concern for these airfoils is the
fretting in fitted interfaces at the dovetail where the blade and disk are connected. Careful
design can reduce fretting in most cases, but not completely eliminate it, because the
airfoils frequently have a skewed (angled) blade-disk dovetail attachment, which leads to
a complex stress state. Further, the local stress state becomes more complex when the
influence of the metal-metal contact and the edge of contact is evaluated.

Because titanium and titanium-base alloys in the clean state will exhibit strong
adhesive bonds [2, 15] when in contact with themselves and other materials, this adhesion
causes heavy surface damage and high friction in practical cases. Therefore, it is possible
that fretting will be a serious concern in this application.

The objective of this investigation was to evaluate the extent of fretting damage on
Ti-48Al-2Cr-2Nb (γ-TiAl) in contact with the nickel-base superalloy 718 at temperatures
from 296 to 823 K. Selected reference experiments were also conducted with Ti-6Al-4V.
There is a large experience base with Ti-6Al-4V, which has been used extensively as a
compressor blade material. The parameters of microscopic, surface-parallel motion, such
as fretting frequency, slip amplitude, and load, were systematically examined in this study.
Scanning interference microscopy (noncontact optical profilometry) was used to evaluate
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surface characteristics, such as topography, roughness, material transfer, and wear volume
loss. Scanning electron microscopy with energy-dispersive spectroscopy was used to
determine the morphology and elemental composition of fretted surfaces, transferred
material, and wear debris.

Materials

The Ti-48Al-2Cr-2Nb specimens were determined to be of the following
composition (in atomic percent): titanium, 47.9; aluminum, 48.0; niobium, 1.96;
chromium, 1.94; carbon, 0.013; nitrogen, 0.014; and oxygen, 0.167. The tensile properties
are shown in Table 1.

Table 1—Tensile Properties of Ti-48Al-2Cr-2Nb
Temperature, K Modulus, GPa Ultimate tensile strength, MPa

293
923

170
140

410
460

The nickel-base superalloy 718 specimens were of the following nominal
composition (in weight percent): nickel, 50–55; chromium, 17–21; iron, 12–23; niobium
plus tantalum, 4.75–5.5; molybdenum, 2.8–3.3; cobalt, 1; titanium, 0.65–1.15; aluminum,
0.2–0.8; silicon, 0.35; manganese, 0.35; copper, 0.3; carbon, 0.08; sulfur, 0.015;
phosphorus, 0.015; and boron, 0.006 [16]. Superalloy 718 was solutioned and aged
according to Aerospace Material Specification AMS 5596G, SAE, Warrendale, PA, 1987,
yielding Rockwell C-scale hardness HRC  of 36. The tensile properties [16] are shown in
Table 2. The ultimate tensile strength of superalloy 718 is greater than that of Ti-48Al-2Cr-
2Nb by a factor of ~3.5 at room temperature and ~2 at high temperature (~1000 K).

Table 2—Tensile Properties of Nickel-Base Superalloy 718
Temperature, K Modulus, GPa Ultimate tensile strength, MPa

293
811

1033

200
171
154

1434
1276
758

The reference Ti-6Al-4V specimens were of the following nominal composition (in
weight percent): titanium, balance; aluminum, 5.5–6.75; vanadium, 3.5–4.5; iron, ≤0.30;

carbon, ≤0.08; nitrogen, ≤0.05; oxygen, ≤0.20; and hydrogen, ≤0.015 [17].

Experiments

Figure 1 presents the fretting wear apparatus used in this investigation. Fretting
wear experiments were conducted with 9.4-mm-diameter, hemispherical nickel-base
superalloy 718 pins in contact with Ti-48Al-2Cr-2Nb flats or with 6-mm-diameter,
hemispherical Ti-48Al-2Cr-2Nb pins in contact with nickel-base superalloy 718 flats in air
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Figure 1—Fretting apparatus.
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at temperatures from 296 to 823 K. All the flat and pin specimens used were polished with
3-µm-diameter diamond powder. Both pin and flat surfaces were relatively smooth, having
centerline-average roughness Ra in the range 18 to 83 nm (Table 3). The Vickers hardness,
measured at a load of 1 N, for the polished flat and pin specimens is also shown in Table 3.
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Table 3—Surface Roughness and Vickers Hardness of Specimens
Specimen Centerline-average

 roughness, Ra, nm
Vickers hardnessa, HV, GPa

Mean Standard
deviation

Mean Standard
deviation

9.4-mm-diameter,
hemispherical, nickel-base
superalloy 718 pin

40 8.9 5.52 0.44

6-mm-diameter,
hemispherical Ti-48Al-2Cr-
2Nb pin

42 7.1 4.12 0.42

9.4-mm-diameter,
hemispherical Ti-6Al-4V pin

83 2.0 3.85 0.092

Ti-48Al-2Cr-2Nb flat 35 3.3 3.78 0.57
Nickel-base superalloy 718
flat

18 7.2 4.78 0.21

aLoad, 1 N.

All fretting wear experiments were conducted at loads from 1 to 40 N, frequencies
of 50, 80, 120, and 160 Hz, and slip amplitudes between 50 and 200 µm for 1 million to
20 million cycles. Both pin and flat surfaces were rinsed with 200-proof ethyl alcohol
before installation in the fretting apparatus.

Two or three fretting experiments were conducted with each material couple at each
fretting condition. The data were averaged to obtain the wear volume losses of Ti-48Al-
2Cr-2Nb and Ti-6Al-4V. The wear volume loss was determined by using an optical
profiler (noncontact, vertical scanning, white-light interferometer). It characterizes and
quantifies surface roughness, height distribution, and critical dimensions (such as area and
volume of damage, wear scars, and topographical features). It has three-dimensional
profiling capability with excellent precision and accuracy (e.g., profile heights ranging
from ≤1 nm up to 5000 µm with 0.1-nm height resolution). The shape of a surface can be
displayed by a computer-generated map developed from digital data derived from a three-
dimensional interferogram of the surface. A computer directly processes the quantitative
volume and depth of a fretted wear scar. Reference fretting wear experiments were
conducted with 9.4-mm-diameter hemispherical Ti-6Al-4V pins in contact with nickel-
base superalloy 718 flats.

Results and Discussion

Observations

Surface and subsurface damage always occurred on the interacting surfaces of the
Ti-48Al-2Cr-2Nb fretted in air. The surface damage consisted of material transfer, pits,
oxides and debris, scratches, fretting craters and/or wear scars, plastic deformation, and
cracks.
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Adhesion and Material Transfer—Figure 2 presents a backscattered electron image
and an energy-dispersive x-ray spectrum (EDS) taken from the fretted surface of the
nickel-base superalloy 718 pin after contact with the Ti-48Al-2Cr-2Nb flat. Clearly, Ti-
48Al-2Cr-2Nb transferred to superalloy 718. The Ti-48Al-2Cr-2Nb failed either in tension
or in shear because some of the interfacial adhesive bonds (solid state or cold welding)
were stronger than the cohesive bonds within the cohesively weaker Ti-48Al-2Cr-2Nb.

Transferred
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Figure 2—Wear scar on superalloy 718 pin fretted against Ti-48Al-2Cr-2Nb flat. (a) SEM 
   backscattered electron image. (b) X-ray energy spectrum with EDS. Fretting conditions: 
   load, 1.5 N; frequency, 80 Hz; slip amplitude, 50   m; total number of cycles, 1 million; 
   environment, air; and temperature, 823 K.

µ
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The ultimate tensile strength of superalloy 718 is greater than that of Ti-48Al-2Cr-2Nb by
a factor of ~3.5 at room temperature and ~2 at high temperature (~1000 K). The failed Ti-
48Al-2Cr-2Nb subsequently transferred to the superalloy 718 surface in amounts ranging
from 10 to 60 percent of the superalloy 718 contact area at all fretting conditions in this
study. The thickness of the transferred Ti-48Al-2Cr-2Nb ranged up to ~20 µm.

As with the materials pair of Ti-48Al-2Cr-2Nb and superalloy 718, material
transfer was observed on the superalloy 718 flat surface after fretting against the Ti-6Al-4V
pin at 696 and 823 K in air. However, the degree of material transfer was remarkably
different and greater, ranging from 30 to 100 percent of the superalloy 718 contact area for
identical fretting conditions. The thickness ranged up to 50 µm.

Fretting Wear—Figure 3 shows typical wear scars produced on the Ti-48Al-2Cr-
2Nb pin and the superalloy 718 flat with fretting. Because of the specimen geometry a
large amount of wear debris was deposited just outside the circular contact area. Pieces of
the metals (both Ti-48Al-2Cr-2Nb and superalloy 718) and their oxides were torn out
during fretting. It appears that the cohesive bonds in some of the contact area of both
metals fractured. Scanning electron microscopy (SEM) and EDS studies of wear debris
produced under fretting verified the presence of metallic particles of both Ti-48Al-2Cr-2Nb
and superalloy 718. In the central region of wear scars produced on Ti-48Al-2Cr-2Nb there
was generally a large, shallow pit, where Ti-48Al-2Cr-2Nb had torn out or sheared off and
subsequently transferred to superalloy 718. The central regions of wear scars produced on
Ti-48Al-2Cr-2Nb and on superalloy 718 were morphologically similar (Fig. 3), generally
having wear debris, scratches, plastically deformed asperities, and cracks.

Figure 4 shows examples of surface damage: metallic wear debris of Ti-48Al-2Cr-
2Nb and superalloy 718, oxides and their debris, scratches (grooves), small craters,
plastically deformed asperities, and cracks. The scratches (Fig. 4(a)) can be caused by hard
protuberances (asperities) on the superalloy 718 surface (two-body conditions) or by wear
particles between the surfaces (three-body conditions). Abrasion is a severe form of wear.
The hard asperities and trapped wear particles plow or cut the Ti-48Al-2Cr-2Nb surface.
The trapped wear particles have a scratching effect on both surfaces; and because they carry
part of the load, they cause concentrated pressure peaks on both surfaces. The pressure

(a) (b)

Figure 3—Wear scars (a) on Ti-48Al-2Cr-2Nb pin and (b) on superalloy 718 flat. Fretting conditions: 
   load, 1 N; frequency, 80 Hz; slip amplitude, 50   m; total number of cycles, 1 million; environment, air; 
   and temperature, 823 K.

µ

100 µm100 µm
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peaks may well be the origin of crack nucleation in the oxide layers and the bulk alloys.
Two types of crack were observed on the wear surface of Ti-48Al-2Cr-2Nb: cracks in the
oxide layers, and cracks in the bulk Ti-48Al-2Cr-2Nb.

Oxide layers readily form on the Ti-48Al-2Cr-2Nb surface at 823 K and are often
a favorable solution to wear problems. However, if the bulk Ti-48Al-2Cr-2Nb is not hard
enough to carry the load, it will deform plastically or elastically under fretting contact. With
Ti-48Al-2Cr-2Nb, cracks occurred in the oxide layers both within and around the contact
areas (Fig. 4(b)).

Fractures in the protective oxide layers produced cracks in the bulk Ti-48Al-2Cr-
2Nb (Fig. 4(c)) and also produced wear debris; chemically active, fresh surfaces; plastic
deformation; and craters or fracture pits (Fig. 4(d)). The wear debris caused third-body
abrasive wear (Fig. 4(a)). Local, direct contacts between the fresh surfaces of Ti-48Al-2Cr-
2Nb and superalloy 718 resulted in increased adhesion and local stresses, which may cause
plastic deformation, flake-like wear debris, and craters (e.g., the fracture pits in the Ti-
48Al-2Cr-2Nb shown in Fig. 4(d)).

Cross sections of a wear scar on Ti-48Al-2Cr-2Nb revealed subsurface cracking
and craters. For example, Fig. 5 shows propagation of subsurface cracking, nucleation of
small cracks, formation of a large crater, and generation of debris. Cracks are transgranular
and have no preference to the microstructure.

Figure 4—Surface and subsurface damage in Ti-48Al-2Cr-2Nb flat in contact with superalloy 718 pin. 
   (a) Scratches. (b) Cracks in oxide layers. (c) Cracks in metal. (d) Fracture pits and plastic deformation.
   Fretting conditions: load, 1 N; frequency, 80 Hz; slip amplitude and total number of cycles: (a) 50   m 
   and 1 million, (b) 60   m and 10 million, (c) 50   m and 1 million, (d) 70   m and 20 million; environment, 
   air; and temperature, 823 K.

(a) (b)

(c) (d)
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µµµ
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Parameters Influencing Wear Loss of Ti-48Al-2Cr-2Nb

Figure 6 shows the wear volume loss measured by the optical interferometer as
a function of fretting frequency for Ti-48Al-2Cr-2Nb in contact with superalloy 718.
Although there were some exceptions, the wear volume loss generally decreased with
increasing fretting frequency. A reasonable amount of material transfer from the Ti-48Al-
2Cr-2Nb specimen to the superalloy 718 specimen was observed at all frequencies. At
the lowest frequency of 50 Hz remarkable plastic deformation (grooving) and surface
roughening in the Ti-48Al-2Cr-2Nb wear scar were observed. At high frequencies wear
scars were noticeably smooth with bulk cracks in the Ti-48Al-2Cr-2Nb surface.

Figure 5—Cross-section view of wear scar on Ti-48Al-2Cr-2Nb
   flat in contact with superalloy 718 pin. (a) Overview. (b) Crack
   growth. Fretting conditions: load, 30 N; frequency, 80 Hz; slip
   amplitude, 70   m; total number of cycles, 20 million; environ-
   ment, air; and temperature, 823 K.

(a)

(b)
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Temperature influences the adhesion, deformation, and fracture behaviors of
contacting materials in relative motion. It is known that temperature interacts with the
fretting process in two ways: first, the rate of oxidation or corrosion increases with
temperature; and second, the mechanical properties, such as hardness, of the materials
are also temperature dependent [9]. Figure 7 presents the wear volume loss measured by
optical interferometry as a function of temperature for Ti-48Al-2Cr-2Nb in contact with

Figure 6—Wear volume loss of Ti-48Al-2Cr-2Nb flat in
   contact with superalloy 718 pin in air as function of 
   fretting frequency. Fretting conditions: load, 30 N; slip
   amplitude, 50   m; total number of cycles, 1 million; 
   environment, air; and temperatures, 296 and 823 K.
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Figure 7—Wear volume loss of Ti-48Al-2Cr-2Nb flat 
   in contact with superalloy 718 pin in air as function
   of fretting temperature. Fretting conditions: load, 
   30 N; slip amplitude, 50   m; total number of cycles,
   1 million; environment, air; and fretting frequencies,
   50, 80, 120, and 160 Hz.
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superalloy 718. Also, SEM images and EDS spectra were taken from the fretted Ti-48Al-
2Cr-2Nb surfaces. The wear volume loss dropped to a low value at 473 K. The worn
surface at 473 K was predominantly oxide and relatively smooth. A protective oxide film
prevented direct metal-to-metal contact and ensured, in effect, that a mild oxidative wear
regime prevailed. However, fretting wear increased as the temperature was increased from
473 to 823 K. The highest temperatures of 723 and 823 K resulted in oxide film disruption
with crack generation, loose wear debris, and pitting of the Ti-48Al-2Cr-2Nb wear surface.

Figure 8 shows the wear volume loss measured by optical interferometry as a
function of slip amplitude for Ti-48Al-2Cr-2Nb in contact with superalloy 718. The
fretting wear volume loss increased as the slip amplitude increased. Increases in amplitude
tended to produce more metallic wear debris, causing severe abrasive wear in the
contacting metals. Figure 9 presents a three-dimensional, optical interferometry image of
the Ti-48Al-2Cr-2Nb wear scar at a slip amplitude of 200 µm and a temperature of 296 K.
In the wear scar are large, deep grooves where the wear debris particles have scratched the
Ti-48Al-2Cr-2Nb surface in the slip direction.

Figure 10 shows the measured wear volume loss as a function of load for Ti-48Al-
2Cr-2Nb in contact with superalloy 718 at a temperature of 823 K, a fretting frequency of
80 Hz, and a slip amplitude of 50 µm for 1 million cycles. The fretting wear volume loss
generally increased as the load increased, generating more metallic wear debris in the
contact area, the primary cause of abrasive wear in both Ti-48Al-2Cr-2Nb and superalloy
718.

Figure 8—Wear volume loss of Ti-48Al-2Cr-2Nb flat 
   in contact with superalloy 718 pin in air as function
   of slip amplitude. Fretting conditions: load, 30 N; 
   frequency, 50 Hz; total number of cycles, 1 million;
   environment, air; and temperatures, 296 and 823 K.
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Figure 10—Wear volume loss of Ti-48Al-2Cr-2Nb flat
   in contact with superalloy 718 pin as function of 
   load. Fretting conditions: frequency, 80 Hz; slip 
   amplitude, 50   m; total number of cycles, 1 million;
   environment, air; and temperature, 823 K.
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Figure 9—Wear scar on Ti-48Al-2Cr-2Nb flat in contact with superalloy 718 pin, showing 
   scratches. Fretting conditions: load, 30 N; frequency, 50 Hz; slip amplitude, 200   m; total 
   number of cycles, 1 million; environment, air; and temperature, 296 K.
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Concluding Remarks

The fretting behavior of  γ-TiAl (Ti-48Al-2Cr-2Nb) in contact with nickel-base
superalloy 718 in air at temperatures of 296 to 823 K was examined with the following
results:

1. The Ti-48Al-2Cr-2Nb transferred to the superalloy 718 at all fretting conditions, such
that from 10 to 50 percent of the superalloy 718 contacting surface area became coated
with the Ti-48Al-2Cr-2Nb. The maximum thickness of the transferred Ti-48Al-2Cr-
2Nb was approximately 20 µm. In reference experiments Ti-6Al-4V transferred to
superalloy 718 under identical fretting conditions. Compared with Ti-48Al-2Cr-2Nb
transfer, the degree of Ti-6Al-4V transfer was greater, such that from 30 to 100 percent
of the superalloy 718 contacting surface area became coated with the Ti-6Al-4V. The
thickness of the transferred Ti-6Al-4V ranged up to 50 µm.

2. The wear scars produced on Ti-48Al-2Cr-2Nb contained metallic and oxide wear
debris, scratches, plastically deformed asperities, cracks, and fracture pits.

3. Although oxide layers readily formed on the Ti-48Al-2Cr-2Nb surface at 823 K,
cracking readily occurred in the oxide layers both within and around the contact areas.

4. The wear volume loss of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting
frequency, increased with increasing temperature, and increased with increasing slip
amplitude.

5. Mild oxidative wear and low wear volume were observed at 473 K.
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